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ABSTRACT
Purpose Assessment of the accuracy of experimental and
theoretical methods of pKa determination for acids and bases as
separate classes.
Methods Four literature pKa datasets were checked for errors and
pKa values assigned unambiguously to a single acidic and/or basic
ionisation centre. A new chemically diverse and drug-like dataset
was compiled from high-throughput UV–vis spectrophotometry
pKa data. Measured pKa values were compared with data obtained
by alternative methods and predictions by the Epik, Chemaxon and
ACD pKa DB software packages.
Results The pKa values of bases were considerably less accurately
predicted than those of acids, in particular for structurally complex
bases. Several new chemical motifs were identified for which pKa
values were particularly poorly predicted. Comparison of pKa
values obtained by UV–vis spectrophotometry and different
literature sources revealed that low aqueous solubility and
chromophore strength can affect the accuracy of experimental
pKa determination for certain bases but not acids.
Conclusions The pKa prediction tools Epik, Chemaxon and
ACD pKa DB provide significantly less accurate predictions
for bases compared to acids. Certain chemical features are
underrepresented in currently available pKa data sets and as a
result poorly predicted. Acids and bases need to be considered
as separate classes during pKa predictor development and
validation.

KEY WORDS bases . pKameasurement . pKa prediction .
solubility . UV–vis spectrophotometry

ABBREVIATIONS
ADMET Absorption, distribution, metabolism, excretion and

toxicity
DMSO Dimethyl sulfoxide
hERG Human ether-a-go-go-related gene
HOMO Highest occupied molecular orbital
LUMO Lowest unoccupied molecular orbital
MAD Median absolute deviation
MW Molecular weight

INTRODUCTION

The acid–base dissociation constant of a molecule, commonly
reported as its negative logarithm or pKa, is an important
physical property to consider during the development of new
drugs. For example, the pKa affects the affinity of a ligand to
its receptor (1–3), pH-dependent aqueous solubility and the
choice of suitable excipients and counterions during drug
formulation (4).

The pKa of bases is of particular relevance because of their
widespread use as solubilising groups. This is reflected in the
high incidence of basic functionality in marketed drugs.
Approximately 63% of drugs in the World Drug Index (5)
are ionisable in the pH 2–12 range and respectively ~43%
and ~12% of these contain a single basic or acidic centre (6,7).
Ionization can profoundly affect the in vivo absorption,
distribution, metabolism, excretion and toxicity (ADMET)
properties of drug candidates (7–14). Certain toxicities like
the inhibition of the human ether-a-go-go-related gene
(hERG) potassium ion channel (15–17) and potentially
phospholipidosis (18) are sensitive to the pKa of a base. By
modulating the overall polarity and electron density of
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molecules variations in pKa can also significantly affect
metabolism (13). The ability to correctly predict basic pKa
values is therefore of considerable importance to the successful
optimisation of lead molecules to development candidates.

The aim of this study is to assess the ability of the pKa
prediction tools Epik (Schrödinger, New York, USA),
Chemaxon (Chemaxon, Budapest, Hungary) and ACD pKa
DB (ACDLabs, Toronto, Canada) to correctly predict the
pKa of basic compounds that are representative of the
chemical space explored in drug discovery. This requires
careful consideration of issues concerning the quality and
scope of published pKa datasets, experimental determination
of pKa data in an industrial setting and the validation of pKa
prediction tools.

Several pKa predictors have been developed that allow the
pKa values of prospective molecules to be estimated prior to
their synthesis (19–24). The validation of pKa prediction tools
requires the availability of accurate experimental pKa data
for compounds relevant to the desired area of application.
The chemical content of published pKa datasets is, however,
often less structurally complex than the chemical space
explored in drug discovery. Many published pKa datasets
contain data extracted from secondary sources. Sometimes
pKa values were copied incorrectly from original references
and information regarding experimental conditions is often
lacking. In addition, the pKa values in these datasets are often
not assigned to specific ionisation centres in each molecule.
Predicted pKa values have therefore often been compared to
the nearest experimental value in studies that assessed the
performance of pKa predictors. This can result in
overestimating the accuracy of the pKa prediction tool. pKa
datasets containing only a single acid and/or base per
compound are therefore preferred in order to enable the
unambiguous assignment of predicted pKa values. Published
assessments of the accuracy of pKa prediction algorithms
usually only report the correlation coefficient (r2) over the
entire pKa range, without further distinction regarding the
quality of predictions for acids and bases as separate classes
(21–23). Whole dataset correlation coefficients can be
misleading because the majority of pKa values for acids and
bases usually lie below and above pKa = 7 (7). Good r2 values
can thus be obtained for an entire dataset, even if in reality a
straight line has been fitted between two poorly defined
clusters of acidic and basic pKa values. The currently available
validation studies thus provide only limited insight into how
accurately the pKa of bases can be predicted compared to
acids.

In this study, the contents of four literature pKa datasets
were verified using the original references and pKa values
were unambiguously assigned to a single acidic and/or basic
centre in each molecule. In addition, a new pKa dataset
was compiled from in-house high-throughput UV–vis
spectrophotometry pKa measurements in order to expand

the chemical space covered by the available literature pKa
datasets. UV–vis spectrophotometry is frequently used in a
high throughput fashion to provide rapid pKa determinations
in an industrial setting. Other techniques, such as capillary
electrophoresis, are considered to be more accurate (19) but
are less practical for the routine pKa determination of large
numbers of compounds.

A number of factors can affect the accuracy of pKa
determination by means of UV–vis spectrophotometry. A
molecule needs to contain a sufficiently strong chromophore
in proximity to its ionisation centre(s) so that the protonated
and deprotonated species can be distinguished in the UV–vis
spectral range (25). Low aqueous solubility presents another
challenge for the accurate measurement of pKa values.
Although UV–vis spectroscopy has been shown to generally
yield accurate pKa data (19,26–29), low solubility remains a
potential source of experimental error (30). This is commonly
addressed by determining apparent pKa (psKa) values in
aqueous mixtures containing a less polar co-solvent (e.g.
methanol). The aqueous pKa can then be obtained by
extrapolating the psKa values to zero co-solvent content using
the Yasuda–Shedlovsky (YS) method (28). Discrimination
between acidic and basic centres is achieved using the sign of
the slope of the YS plot. Acids have a positive slope in YS plots
because their apparent pKa increases with increasing co-
solvent content and the opposite trend is observed for bases
(31,32). Erroneous inversions of the sign of the slope in
YS-plots can occur during automatic curve-fitting when the
slope is small (33) and thus yield incorrect pKa assignments.
This becomes more likely when the average diameter of the
ionised molecule is large or the charge density at its ionisation
centre is low (34–36). The pKa dataset compiled fromUV–vis
spectrophotometry data allows us to investigate the occurrence
of such experimental errors and assess the performance of pKa
predictors on a new, structurally diverse dataset.

MATERIALS AND METHODS

Preparation of the Compound Datasets

Four datasets were extracted from the literature and comprise
the Liao dataset (23) (a subset of pKa values measured with
high accuracy as published by Prankerd (37)), the Avdeef or
GOLD dataset (38), the Morgenthaler dataset (39) and the
Luan dataset (20). The latter consists solely of bases for which
pKa data were reported by Lombardo and co-workers (11).
The dataset selected from our in-house collection will be
referred to as the Vertex dataset.

The chemical structures of the compounds in the Avdeef
(38) and Luan (20) datasets were obtained by searching for their
names and smiles strings in the PUBCHEM database using a
Python script (40). The smiles strings for the compounds in the
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Morgenthaler dataset (39) were obtained with the help of
optical structure recognition software (41). All structures and
associated pKa data from the five datasets were visually
inspected to assure the correct assignment of pKa values.

For simplicity, only amines (primary, secondary and
tertiary) and 4-aminopyridines were considered as bases and
carboxylic acids and N-aryl secondary amides as acids. The
inclusion of other acids such as sulfonamides was considered,
however, only three and four compounds from the Liao and
Avdeef datasets contained a sulfonamide as the single acidic
centre. The pKa values of 75 acidic sulfonamides from the
Vertex collection were measured (data not shown) but
published pKa data obtained by other methods were only
available for four of these compounds. The lack of alternative
experimental data for comparison purposes did not allow for
an in depth comparison and therefore sulfonamides were
not included in the analyses. The pKa predictions for this set
of Vertex sulfonamides did, however, correlate well with our
measured values with r2 values of 0.71 and 0.63 for
Chemaxon and Epik respectively.

The names, smiles strings and experimental pKa values of
the compounds in the final processed Liao, Avdeef,
Morgenthaler and Luan pKa datasets are available as
Supplementary Material in Tables SIV–SVII.

In Silico Predictions

Epik 2.1209 is a pKa prediction tool available from
Schrödinger Inc. This method uses Hammet-Taft equations
with extensions, such as mesomer standardisation, charge
cancellation and charge spreading approaches (42). It can also
be used to generate and predict different protonation states
and tautomers. pKa values were calculated using the
command-line script called “epik” using the “–scan” option.

Chemaxon is the pKa prediction tool (43) available in
Marvin (version 5.3.2). This software application predicts the
microspecies distribution by calculating the sum of increments
from partial charge, polarisability and structure specific
features of the molecule. Macro ionisation constants
associated with the ionisable functional groups of the molecule
are calculated and displayed in the graphical user-interface.

The ACD/pKa DB software (ACDLabs pKa DB, version
5.13, ACDLabs, Toronto, 2001) uses Hammett-Taft
equations derived from a large library of experimental data
to predict pKa.

Given that pKa predictors are prone to random errors,
sometimes >4 pKa units in cases where an ionization center is
not parameterized, error estimates can be skewed by large
outliers. Therefore the Median Absolute Deviation (MAD)
was used alongside correlation coefficients as a robust measure
of prediction error with reduced sensitivity to random outliers.

All cLogPs were calculated with Marvin, whereas polar
surface areas (PSA) were calculated according to the method

described by Ertl and co-workers (44). Chemical space was
analysed by performing a principal component analysis on 2D
MACCS fingerprints calculated with MOE (version 2010.10,
Chemical Computing Group, Montreal, Canada) using a
script provided by their customer support. MOE was also
used to compute van der Waals volumes and the distance in
Å between the ionisation centre and the centroid of the closest
aromatic ring. For 4-aminopyridines the distance was
measured from the pyridine nitrogen atom to the centroid of
the aromatic ring whereas for N-aryl secondary amides, the
distance was measured from the amide nitrogen atom to the
centroid of the aromatic ring.

The highest occupied molecular orbital (HOMO) and the
lowest unoccupiedmolecular orbital (LUMO) energies (in eV)
were calculated using the semi-empirical quantum mechanic
Modified Neglect of Differential Overlap method (MNDO),
as implemented in MOE. These calculations were performed
on the ionised and the neutral form of eachmolecule. HOMO
and LUMOenergies could not be calculated for amphotericin
B (compound 13 in the Vertex dataset), due to the size and
complexity of this molecule.

Experimental pKa Determinations

All pKa measurements were performed on the GLpKa
instrument and data analysed using the RefinementPro
software, both from Sirius Analytical Instruments (East
Sussex, UK). A hybrid pH-metric/UV method (Fast-D-PAS)
was used to monitor changes in UV absorbance of analytes
during titration runs that spanned a range between 2 and 12
pH units. Standardisation of the pH electrode, measurements
of UV lamp output intensity, and calibrations were all
performed according to the manufacturer’s guidelines.
Samples were dissolved to 10 mM in dimethyl sulfoxide prior
to running experiments. Then, 250 mL of a proprietary buffer
solution from Sirius Analytical Instruments was manually
added to 50 mL of 10 mM of each test compound resulting
in a compound concentration of 1.67 mM prior to the start of
titrations. An individual assay consisted of three titrations per
vial. Due to concerns regarding compound solubility, each of
the three titrations was performed in the presence of methanol
co-solvent, at 50%, 40%, and 30% v/v methanol. The
temperature was held constant at 25°C. Each titration curve
was first corrected for background absorbance of the buffer
solution. psKa values were obtained at 50%, 40%, and
30% methanol concentrations. Aqueous pKa values were
determined by extrapolating the psKa values to zero
methanol content using the YS procedure (28). The slope of
the YS curve was used to assign pKa values to the acids and
bases of zwitterions. The purity of compounds showing large
deviations from their predicted pKa values was confirmed to
be >90% by HPLC or LC/MS.
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Solubility Measurements

Solubility for a subset of 156 randomly chosen
compounds from the Vertex dataset was measured using
a high throughput shake flask assay at pH 7.4. These
compounds were supplied as samples containing
typically 2% of dimethyl sulfoxide (DMSO) which may
result in some overestimation of their aqueous solubility.
The assay determines the equilibrium solubility of
compounds in isotonic neutral buffer solution (Gibco
Dulbecco Phosphate Buffered Saline solution). The
method relies on segregating a precipitating solid from
the buffer by centrifugation and determining the
compound concentration in the supernatant by liquid
chromatography using UV–vis spectroscopy for
detection.

RESULTS AND DISCUSSION

Accuracy, Physicochemical Property Distributions
and Chemical Diversity of the pKa Datasets

The assignment of pKa values to the correct ionisation centre
is critical to performing accurate pKa predictions but can be
challenging for compounds containing more than one
ionisation centre. In order to avoid misassignment of pKa
values, only compounds containing a single basic and/or
acidic centre were selected from the pKa datasets.

A number of errors were identified in the published pKa
datasets. For example, the pKa values for the amines of
terbutaline and labetalol from the Luan dataset differ from
those in the original reference cited in their work (11).
Comparing pKa values with those reported for the same or
highly similar molecules in other sources identified additional
errors. For example, pyridoxamine (compound 176 in the
Liao dataset depicted in Fig. 1) contains a primary amine, a
pyridine and a phenol. In the pKa prediction study carried
out by Liao and Nicklaus, the experimental pKa values of the
amine and phenol were assigned to be 8.11 and 10.34 (23).
The experimental pKa values for the closely related
compound pyridoxine (Fig. 1) are 8.87 and 4.84 for the
phenol and pyridine (38), suggesting that the pKa of the amine

and phenol in pyridoxamine should be 10.34 and 8.11. Errors
of this type were corrected in all datasets used in this study. It
was not always reported in the original references whether
co-solvents and YS extrapolation were used. Some of the pKa
values in the Morgenthaler set were measured in 10%
methanol but without YS extrapolation, which could
introduce additional errors.

The contents of the final five processed datasets used for
pKa predictions are listed in Table I. The Morgenthaler and
Luan datasets contained only bases, whereas the remaining
datasets contained compounds with only one basic and/or
one acidic centre after processing. Out of the 477 compounds
comprising the Vertex dataset, 106 (~22%) were commercially
available. The measured pKa values for these compounds are
provided as Supplementary Material (Table SI).

Figure 2 shows the distribution of cLogP and
molecular weight (MW) for the datasets used in this
study. Drug-like molecules are often larger and more
complex than the general organic chemicals often used
in the parameterisation and validation of pKa
predictors. Therefore the percentage of compounds with
drug-like characteristics and the degree of chemical
diversity were determined for each dataset.

According to Ghose and co-workers (45), drug-like
compounds are characterised by having 160 < MW < 480
and −0.4 < cLogP < 5.6. Applying these ranges to the five
datasets demonstrated that ~84%, ~46% ~65%, ~60%,
~96%, of the compounds in the Vertex, Liao, Avdeef,
Morgenthaler and Luan datasets met these criteria. A more
detailed breakdown of the datasets in terms of how they
conform to the Ghose criteria for drug-likeness is provided
in the Supplementary Material as Table SII. The dataset
containing the least drug-like molecules is the Liao dataset as
it contains a significant proportion of compounds with
MW < 160 and/or cLogP < −0.4. Figure 3 compares the
chemical space occupied by the five datasets used in this study.
The Liao and Avdeef datasets were similar in terms of the
chemical space covered, whereas the remaining datasets showed
a much greater diversity. The Vertex and Morgenthaler

Fig. 1 Chemical structures of pyridoxamine and pyridoxine.

Table I Composition of the Datasets. Twenty (a), Nine (b) and Thirteen (c)
Compounds in the Vertex, Liao and Avdeef Datasets Contained One Basic
and One Acidic Centre Within the Same Molecule

Dataset Number of unique
compounds

Number of acidic
centres predicted

Number of basic
centres predicted

Vertex 477a 167 330

Liao 105b 43 71

Avdeef 122c 49 86

Morgenthaler 174 0 174

Luan 67 0 67
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datasets showed the highest chemical diversity and are therefore
the most relevant datasets for validating and expanding the
scope of pKa prediction methods.

Figure 4 shows the distribution of pKa values for acids and
bases in the Vertex dataset. Acidic pKa values generally
cluster in the 2–6 pKa range while the N-aryl secondary acidic
amides provide a second cluster of pKa values around
pKa = 10. Bases show a larger variation of pKa values in
comparison to acids with values ranging from less than 6 to
~11.

Sources of Error in UV–vis Spectrophotometric pKa
Determination

The Vertex dataset is the only dataset for which all pKa values
were obtained using the same methodology: UV–vis
spectrophotometry using water/methanol mixtures with the

final aqueous pKa values determined by YS extrapolation.
This provided the opportunity to assess potential sources of
error unique to this methodology inmore detail. One acid was
identified for which erroneous YS curve extrapolation yielded
a negative slope. Such errors can occur when the slope is
small and might result in its pKa value being incorrectly
assigned to a base. This error was identified and corrected
by comparing the YS plots of structurally related compounds
(see Supplementary Material).

The pKa values for 50 out of 106 commercially available
compounds within the Vertex dataset could be compared with
independently determined pKa values and are provided in
Table SIII in Supplementary Material. Acids showed
excellent agreement with the literature data but bases
compared poorly with an r2 of 0.52 and a slightly higher
median absolute deviation (MAD) in comparison to bases
(Table II). The same analysis was performed for the four
literature datasets and yielded r2 values greater than 0.9 for
both acids and bases in all datasets (data not shown). These
results suggest that high-throughput UV–vis spectrophotometry
yielded erroneous pKa data for at least some bases. Careful
inspection revealed that the low r2 value obtained for the bases
in our dataset was due to five outliers that differed by more than
0.8 pKa units from their literature values. When the correlation
coefficient was recalculated with these compounds omitted the
r2 for bases improved to 0.83 and MAD to 0.15 (Table II). In
order to better understand the underlying causes of these errors,
the influence of solubility, chromophore strength and distance to
the ionisation centre on experimental error were further
investigated.

Solubility

The aqueous solubility was measured for 46 out of the 50
compounds from the Vertex dataset with published pKa values.
The relation between solubility and the difference between pKa
values obtained through UV–vis spectrophotometry and
published data is shown in Fig. 5a. Bases show significantly
larger experimental discrepancies than acids and tend to be less
soluble. The distribution of aqueous solubility for all 156
compounds with solubility data in the Vertex dataset is depicted
in Fig. 6. The majority of acids are highly soluble (>200 μM)
whereas the solubility of bases is generally lower and more
variable, in agreement with previous analyses of drug-like
compounds (12). At the pH used to determine the solubility of
these compounds (pH=7.4), carboxylic acids are fully
ionised whereas a significant portion of bases from the
Vertex dataset are not (Fig. 4) which may explain their
reduced solubility (12). In addition, amines are often
used in medicinal chemistry to solubilise poorly soluble
compounds. Measuring the pKa of bases with low
aqueous solubility using UV–vis spectrophotometry
may therefore benefit from repeating the experiment

Fig. 2 Distribution for the cLogP (a ) and molecular weight (MW) (b ) for the
five chemical datasets.
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using higher co-solvent concentrations or a less polar
co-solvent. Among the five outliers, fluspiriliene and
tamoxifen were found to have an aqueous solubility
<10 μM.

Chromophore Strength and Distance to the Ionisation Centre

A key requirement for UV–vis spectrophotometric detection
in pKameasurements is that a significant change occurs in the
UV–vis spectrum of a compound upon ionisation. This
requirement is thought to be met if a molecule contains a
strong chromophore in proximity to its ionisation centre (25).

The fact that carboxylic acids and N-aryl amides absorb in the
UV–vis range and their chromophores thus coincide with
their ionisation centres is likely to aid the accuracy with which
their pKa values can be determined (Table II). The 4-
aminopyridines in the Vertex dataset present a special case
among the basic compounds as their ionisation centre
coincides with their chromophore and for these compounds
a significant smaller average prediction error (0.35±0.27) was
obtained in comparison with other bases (0.54±0.52).

A smaller difference between the HOMO and LUMO
energy levels of a molecule, correlates with increased
conjugation and molar absorptivity (i.e. chromophore
strength) (46). This is an approximation since other factors
such as steric effects, alkyl substitutions, geometrical strain,
solvent polarity and interactions with other chromophores in
the same molecule can also influence the maximum
absorptivi ty in the UV-visible spectrum (46,47) .
Unfortunately, experimental absorptivity data at λmax were
unavailable for the Vertex dataset so the calculated HOMO-
LUMO gap was used as a substitute descriptor.

Figure 5b shows the differences between pKa values obtained
with UV–vis spectrophotometry and literature data plotted
against the HOMO-LUMO energy difference calculated for
the ionised molecules. The remaining three outliers (ranitidine,
amitriptyline and cyclobenzaprine) hadHOMO-LUMOenergy
differences >5 eV. The pKa value of ranitidine was 9.6 as
determined by UV–vis spectrophotometry, compared to
published values in the 8.31–8.47 range (11,38,48). Ionisation
of the amino group of ranitidine does not significantly alter its
UV–vis spectrum and this appears to be reflected in its large
HOMO-LUMO gap of ~7 eV. The HOMO-LUMO energy
difference of a base can be easily calculated and a value >5 eV

Chemical space

PC1

P
C

2

Vertex
Liao
Avdeef
Morgenthaler
Luan

Fig. 3 Chemical space of the five
datasets used in this study. Principal
components (PC) were derived
from principal component analysis
on MACCS fingerprints.

Fig. 4 Distribution (histogram and box plot) of experimental pKa values in
the Vertex dataset. Acids and bases are shown in red and blue, respectively.
The median, the first and third quartiles are shown. Empty circles represent
outliers.
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could warrant a critical assessment of its pKa value when
determined by UV–vis spectrophotometry.

The distance between the ionic centre and the centroid of
the closest aromatic ring in the molecule can be considered as
a descriptor for the proximity of the chromophore to the
ionisation centre in a molecule. This is again an
approximation since amides, esters, double or triple bonds
and sulphur atoms are also known chromophores (46,47).
Figure 5c does not show any correlation between this
descriptor and the variation in experimental pKa values.
These results suggest that UV–vis spectrophotometry can still
be used to accurately determine the pKa of a molecule even if
the distance between chromophore and the ionisation centre
is relatively long.

Results of pKa Predictions

Tables III, IV and V list the r2 and MAD values for
the prediction of the pKa values of all ionisation centres
by Chemaxon, Epik and ACD pKa DB. Correlation
coefficients and MAD values are also provided for the
acids and bases in each dataset as separate classes. In
terms of overall prediction quality the Vertex dataset
gave comparable results to four literature data sets.
Comparing the r2 values obtained for acids and bases
with the r2 for both classes combined provided insight
into the true accuracy of the pKa prediction methods.
This is illustrated in Fig. 7, where the Epik pKa
predictions for the acids and bases in the Vertex dataset
are shown separately. The squared correlation
coefficients and MAD values equal 0.35/0.60 for bases
and 0.83/0.40 for acids, compared to an r2 and MAD
of 0.84/0.55 for the entire dataset. The correlation
found for the entire dataset seems artificially high and
appears to be achieved by fitting a line through the
clusters of acids and bases below and above pKa = 7.
Predictions for the bases and acids from the Vertex
dataset as separate classes follows the same trend as
found for the literature datasets where basic pKa values
are generally less accurately predicted compared to
acidic pKa values.

It is difficult to directly compare our pKa predictions with
those previously reported in the literature due to the use of
older versions of the pKa prediction software and our
selections from and corrections to the original literature
datasets. Nevertheless, the r2 values 0.97 for Chemaxon,
0.93 for Epik and 0.96 for ACD pKa DB obtained for the
entire Liao data set in this study (Tables III, IV and V)
compare favourably to the equivalent r2 values of 0.763,
0.802 and 0.908 reported previously (23). Our prediction
results for the entire Avdeef dataset (r2=0.94, 0.87 and 0.93
using Chemaxon,Epik and ACD pKa DB, respectively) show
an improvement over the equivalent r2 values of 0.892 and
0.485, 0.923 reported by Balogh et al . (22). The r2 values
obtained by predicting the entire Vertex pKa dataset (0.87,
0.84 and 0.81 for Chemaxon, Epik and ACD pKa DB,
respectively) compare well with published comparisons and
the range of r2 values found for the literature datasets used in
the current study (0.25–0.97, 0.45–0.93 and 0.69–0.96 and
for Chemaxon, Epik and ACD pKa DB, respectively).

As shown in Tables III, IV and V, it is difficult to judge which
is the best performing pKa predictor because their performance
is highly dependent on the dataset being predicted. For example,
the pKa values of bases in the Morgenthaler dataset were
predicted well by Epik (r2=0.81) but poorly by Chemaxon
(r2=0.25). In contrast, the pKa values of acids in the Avdeef
dataset were predicted well by Chemaxon (r2=0.70) but poorly
by Epik (r2=0.25). Epik tends to yield the highest MAD values
while Chemaxon and ACD pKa DB yield comparable, lower
prediction errors.

In general the pKa values of acids are predicted with
considerably higher r2 (r2>0.7) and lower MAD (<0.4)
values than those of bases (see Tables III, IV and V). As
reported by Gleeson (12) and confirmed by the
distribution of pKa values from the Vertex dataset as
shown in Fig. 4, pKa values of basic compounds are
generally distributed over a wider range of pKa in
comparison to acids. This could explain why it is more
challenging to predict the pKa of bases correctly.

Many prediction errors were caused by the presence of
specific chemical features, which appear to be well
parameterised for one pKa predictor but poorly for the other
and vice versa . The more structurally diverseMorgenthaler and

Table II Squared Correlation Coefficients andMedian Absolute Deviation (MAD) Values Obtained by Comparing Experimental pKa Values Measured Using UV–vis
Spectrophotometry and Literature Data. Total Number of Acidic Centres = 20; Total Number of Basic Centres = 35; Total Number of Zwitterions = 5

r2/MAD
(all ionisation centers)

r2/MAD
(acids)

r2/MAD
(bases)

Vertex vs published experimental pKa (50 compounds)a 0.96/0.16 0.97/0.13 0.52/0.17 (0.83/0.15)a

(a): r2 and MAD recalculated after the removal of five outliers
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Fig. 5 The relationship between
Δexp pKa (the difference between
pKa values measured with UV–vis
spectrophotometry and
independently determined values
from the literature) with the
aqueous solubility (a ), the HOMO-
LUMO energy difference (b ) and
the distance from the ionisation
centre to the nearest aromatic ring
(c), for a subset of compounds from
the Vertex dataset. Acids and bases
are coloured in red and blue,
respectively. Compounds with
solubility >200 μM are shown in
the plot as if they had a solubility of
200 μM.
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Vertex datasets showed the poorest predictions for their basic
pKa values. This suggests the presence of unique structural
features in these bases, which were not present in the datasets
used to calibrate pKa prediction methods. In the next section
structural motifs for which one of the two pKa predictors
performed poorly are exemplified.

Analysis of Errors in pKa Prediction

Cases where Epik or Chemaxon failed to correctly predict pKa
values were identified as compounds that were predicted well by
one algorithm (absolute error <0.5 pKa units) but poorly by the
other (absolute error >1.5 pKa units). Table VI lists cases where
Epik but not Chemaxon gave large prediction errors. Epik failed
to predict the pKa correctly of several amines with an electron-
withdrawing group two carbon atoms removed from the amine.
Some carboxylic acids (such as 4-oxo-1,4-dihydropyridine-3-
carboxylic acid) also yielded high prediction errors (in some cases
>3 units of pKa). The pKa of several N-aryl secondary amides
was also poorly predicted by Epik by ~2 pKa units. Table VII
illustrates cases where only Chemaxon yielded large pKa
prediction errors. Chemaxon incorrectly predicted the pKa
values of various tertiary amines with low pKa <7. Some of
these amines from theMorgenthaler dataset were predicted with
an error > 4 units of pKa. Table VIII provides examples where
ACDpKaDBperformed better than both Epik andChemaxon.

Even though Epik and Chemaxon were validated with
large, albeit undisclosed chemical datasets (42,43), the poor
predictions for the ionisation centres shown in Tables VI, VII
and VIII suggest that some chemical features were still
underrepresented. These examples could be used to improve
the scope of both pKa predictors.

CONCLUSIONS

The development and validation of pKa prediction tools
commonly relies on the assumption that the pKa values
of acids and bases can be measured and predicted with
equal accuracy. Predictions for these two types of
ionisation centres have therefore rarely been compared
in any detail. Validation studies often use historic
literature pKa datasets containing compounds with
limited structural diversity and multiple, sometimes
erroneous pKa values that are not unambiguously
assigned to their ionisation centres. All these factors
can result in overestimation of the accuracy of pKa
prediction tools.

The validation and improvement of pKa prediction
tools requires the availabi l i ty of accurate and
unambiguously assigned pKa data in order to gain a
realistic appreciation of their true accuracy. Analysis of
four literature pKa datasets identified several errors and
a lack of chemical diversity and structural complexity in
certain datasets. In order to expand the chemical space
available for the development and validation of pKa
prediction tools a new, more chemically diverse and
drug-like dataset obtained by UV–vis spectrophotometry
has been made available.

Fig. 6 Distribution of the solubility (histogram and box plot) measured for a
subset of 156 compounds from the Vertex dataset. Compounds with
solubility >200 μM are shown as if they had a solubility of 200 μM Acids
and bases are coloured in red and blue, respectively. The median, the first and
third quartiles are shown. Empty circles represent outliers. Most of the acids
have solubility >200 μM.

Table III Squared Correlation Coefficients and Median Absolute Deviation
(MAD) Values for pKa Predictions Using Chemaxon

Dataset r2/MAD (all predictions) r2/MAD (acids) r2/MAD (bases)

Vertex 0.87/0.51 0.89/0.37 0.39/0.64

Liao 0.97/0.33 0.76/0.41 0.75/0.31

Avdeef 0.94/0.29 0.7/0.33 0.55/0.29

Morgenthaler 0.25/0.52 NA 0.25/0.52

Luan 0.57/0.33 NA 0.57/0.33

NA: not applicable because no acidic centres were present in the set

Table IV Squared Correlation Coefficients and Median Absolute Deviation
(MAD) Values for pKa Predictions Using Epik

Dataset r2/MAD (all predictions) r2/MAD (acids) r2/MAD (bases)

Vertex 0.84/0.55 0.83/0.40 0.35/0.60

Liao 0.93/0.43 0.73/0.28 0.49/0.58

Avdeef 0.87/0.43 0.25/0.37 0.44/0.45

Morgenthaler 0.81/0.83 NA 0.81/0.83

Luan 0.45/0.45 NA 0.45/0.45

NA: not applicable because no acidic centres were present in the set
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Analysis of this dataset and literature data showed that the
experimental determination of the pKa of basic compounds is
more prone to errors because of the generally lower aqueous
solubility of bases compared to acids. Increased co-solvent
concentrations or the use of alternative, less polar co-solvents
could render pKa measurements for such bases more
accurate. The determination of basic pKa values by UV–vis
spectrophotometry can yield additional errors due to the
presence of weak chromophores. Bases are more sensitive to
the presence of a weak chromophore since, unlike acids, their
chromophores usually do not coincide with the ionisation
centre. Bases with calculated HOMO-LUMO energy
differences greater than 5 eVmay possess weak chromophores
and alternative experimental methods of pKa determination
may have to be considered in such cases. Despite the increased
risk of errors that often accompanies high-throughput
methodologies, pKa values obtained by high-throughput
UV–vis spectrophotometry compared well with pKa values
obtained by manually performed measurements using
different experimental techniques.

Our results demonstrate the need for significant
improvement in the pKa prediction of basic compounds.
For the most chemically diverse datasets, prediction of the
pKa values of bases by the Epik, Chemaxon and ACDLabs
pKa predictors was found to be significantly less accurate than
for acids or both classes combined. The prediction of the pKa
of acids generally yielded higher r2 values than those for bases.
Similarly, the MAD values for the more chemically diverse
bases from the Vertex and Morgenthaler data sets was found
to reach values in 0.5–0.8 range while acids generally had
MAD values in the 0.3–0.4 range. This result confirms the
necessity to consider both classes separately during the
development and validation of pKa prediction tools, which
is currently not standard practice.

The discrepancy in accuracy between basic and acidic pKa
predictions may be partially due to the larger pKa range
exhibited by bases compared to acids. A scarcity of datasets
containing more diverse and structurally complex compounds
is another limiting factor in the development of more accurate
pKa predictors. The Vertex and Morgenthaler datasets,
which contained the most structurally diverse compounds,
yielded the worst predictions for the pKa of basic compounds.
These results suggest that these two datasets contain structural
motifs that were poorly represented in the datasets used to
parameterise the pKa prediction algorithms used in this study.
A number of new chemical substructures were identified in
the five datasets for which the pKa was predicted with errors
greater than 1.5 pKa units by either of the Chemaxon and
Epik predictors. The curated literature data and the Vertex
pKa dataset together form a new collection of unambiguously
assigned pKa data covering a more diverse range of
chemistries of use to the development of improved pKa
prediction tools.

Table V Squared Correlation Coefficients and Median Absolute Deviation
(MAD) Values for pKa Predictions Using ACD pKa DB

Dataset r2/MAD (all predictions) r2/MAD (acids) r2/MAD (bases)

Vertex 0.81/0.52 0.82/0.43 0.37/0.61

Liao 0.96/0.21 0.76/0.11 0.69/0.31

Avdeef 0.93/0.25 0.31/0.19 0.74/0.3

Morgenthaler 0.91/0.47 NA 0.91/0.47

Luan 0.69/0.27 NA 0.69/0.27

NA: not applicable because no acidic centres were present in the set
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Fig. 7 pKa prediction plot for the
Vertex dataset using Epik. Acids and
bases are coloured in red and blue ,
respectively. The r2 for the whole
dataset is 0.84 whereas the r2 is
0.83 for acids and 0.35 for bases.
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Table VI Cases Where Epik Gives A Substantial pKa Prediction Error in Comparison to Chemaxon (Absolute Errors >1.5 and <0.5 units Respectively)

For each compound the ionisation centre predicted is indicated with A for the acid or B for the base. The names of the original set and of the compound are the
same as reported in Supplementary Material. If the compound is present in more than one set, the names and the experimental pKa values of each compound are
separated by a forward slash
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Table VII Cases Where Chemaxon Gave A Substantial pKa Prediction Error in Comparison to Epik (Absolute Errors >1.5 and <0.5 units Respectively)

For each compound the basic centre predicted is indicated with the letter B. The names of the original dataset and of the compound are the same as reported in
Supplementary Material
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